Oblique derivative problems for elliptic equations on conical domains

نویسندگان

چکیده

We study the oblique derivative problem for uniformly elliptic equations on cone domains. Under assumption of axi-symmetry solution, we find sufficient conditions angle vector Hölder regularity gradient to hold up vertex cone. The proof is based application carefully constructed barrier methods or via perturbative arguments. In case that such does not hold, give explicit counterexamples. also a counterexample in absence axi-symmetry. Unlike equivalent two-dimensional problem, all axi-symmetric solutions, but rather qualitative properties depend both opening and boundary condition.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonuniqueness for some linear oblique derivative problems for elliptic equations

It is well-known that the “standard” oblique derivative problem, ∆u = 0 in Ω, ∂u/∂ν − u = 0 on ∂Ω (ν is the unit inner normal) has a unique solution even when the boundary condition is not assumed to hold on the entire boundary. When the boundary condition is modified to satisfy an obliqueness condition, the behavior at a single boundary point can change the uniqueness result. We give two simpl...

متن کامل

Local Estimates for Subsolutions and Supersolutions of Oblique Derivative Problems for General Second Order Elliptic Equations

We consider solutions (and subsolutions and supersolutions) of the boundary value problem au(x,u,Du)DiJu + u(x,u,Du) = 0 in £2, ß'(x)Diu + y(x)u = g(x) on3fi for a Lipschitz domain ß, a positive-definite matrix-valued function [u'j], and a vector field ß which points uniformly into Q. Without making any continuity assumptions on the known functions, we prove Harnack and Holder estimates for u n...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

The oblique derivative problem for general elliptic systems in Lipschitz domains

Parenthetically, we observe that if L is strongly elliptic, then L− λ, λ ∈ R, satisfies the non-singularity hypothesis (3) relative to any subdomain Ω ⊆ M provided λ is sufficiently large. This is a consequence of Garding’s inequality, which is valid in our setting (even though V may be unbounded). Also, clearly, if L is strongly elliptic and negative semidefinite, then L−λ satisfies (3) for an...

متن کامل

Nonlinear oblique derivative problems for singular degenerate parabolic equations on a general domain

We establish comparison and existence theorems of viscosity solutions of the initial-boundary value problem for some singular degenerate parabolic partial di/erential equations with nonlinear oblique derivative boundary conditions. The theorems cover the capillary problem for the mean curvature 1ow equation and apply to more general Neumann-type boundary problems for parabolic equations in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 2022

ISSN: ['1469-7750', '0024-6107']

DOI: https://doi.org/10.1112/jlms.12583